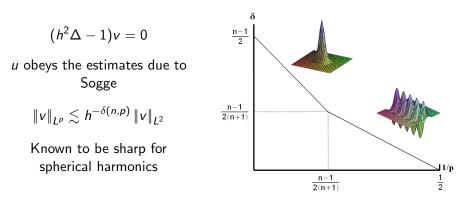
L^p estimates for joint eigenfunctions

Melissa Tacy

University of Auckland

13 January 2021



Was extended (by Koch-Tataru-Zworski) to a result about pseudodifferential operators whose symbols obey a curvature assumption.

Joint eigenfunctions

In a letter to Morawetz, Sarnak asks whether improvements can be made to L^∞ estimates for v

$$P_i v = 0$$
 $\Delta - 1 = P_1, \ldots, P_r$

where the P_i are a set of pseudodifferential operators. Counterexample on sphere S^2

$$P_1 = \Delta - 1$$
 $P_2 = \partial_{\varphi}$

must obey Sogge's estimates for $p \ge 6$ as zonal harmonics are invariant under rotations around the north pole.

Positive result, if M is a rank r symmetric space

$$\|v\|_{L^{\infty}} \lesssim h^{-\frac{n-r}{2}} \|v\|_{L^2}$$

For eigenfunctions of Δ on symmetric spaces Marshall obtains

$$\|v\|_{L^p} \lesssim h^{-r\delta(n/r,p)} \|v\|_{L^2}$$

(except at $p = \frac{2(n+r)}{n-r}$ where there is logarithmic loss) Example to keep in mind

$$S^{n/r} \times S^{n/r} \times \cdots \times S^{n/r}$$

$$\mathbf{v} = \phi_1(\mathbf{x}_1)\phi_2(\mathbf{x}_2)\cdots\phi_r(\mathbf{x}_r)$$

where each ϕ_i is a spherical harmonic. So eigenfunctions on symmetric spaces have L^p growth no worse than this example.

Assume v is a joint quasimode of r semiclassical ΨDOs

```
p_1(x, hD), \ldots, p_r(x, hD)
```

obeying a curvature condition.

 $p_i(x, hD)v = \text{Error}$

• What do we need to assume about the quasimode error?

- What conditions do we need on the $p_i(x, hD)$ to get improvements?
- What curvature condition do we need? What is so important about curvature conditions?

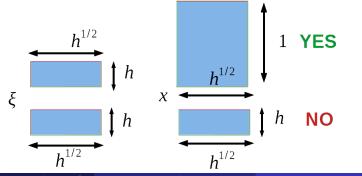
The role of the uncertainty principle

In general terms the uncertainty principle tells us that you cannot concentrate both the Fourier transform of u and u itself. If

$$\mathcal{F}_h[v] = \frac{1}{(2\pi h)^{n/2}} \int e^{-\frac{i}{h} \langle x, \xi \rangle} v(x) dx$$

then

(concentration scale of $\mathcal{F}_h[v]$) imes (concentration scale of v) $\geq h$



Melissa Tacy (University of Auckland)

Uncertainty in solutions to PDE

Suppose we are working with approximate eigenfunctions to Δ in \mathbb{R}^n .

$$\Delta = -\sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2}$$

Using the Fourier transform method we have that if

$$(h^2\Delta - 1)v = hf$$

then

$$(|\xi|^2-1)\mathcal{F}_h[v]=h\mathcal{F}_h[f]$$

The scaling on the semiclassical Fourier transform is chose precisely so that \mathcal{F}_h preserves L^2 norms. Therefore

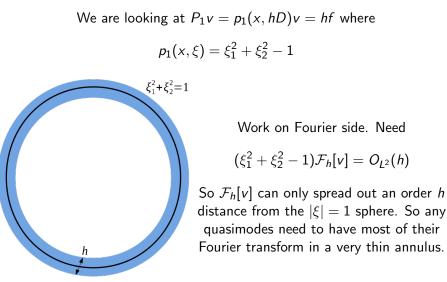
If v satisfies the **differential equation** up to L^2 order h error

The Fourier transform $\mathcal{F}_h[v]$ satisfies the associated **algebraic equation** up to L^2 order *h* error.

In particular the Fourier transform of v must "live" near the set $|\xi| = 1$.

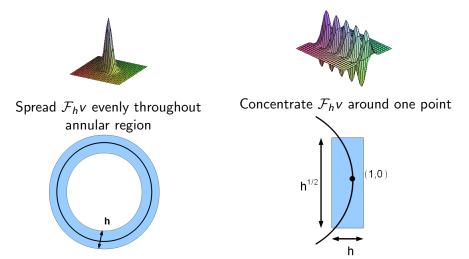
Melissa Tacy (University of Auckland)

2D model



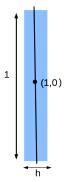
Let's first ask what this tells us about solutions to just one equation.

Ways to concentrated $\mathcal{F}_h[v]$

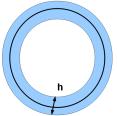


Can produce examples with intermediate spread.

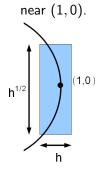
Let's compare our curved example with a flat one. If $Q = hD_{x_1} - 1$ then if v is a order h quasimode $\mathcal{F}_h[v]$ must live near $\xi_1 = 1$.



Since $\mathcal{F}_h[v]$ is concentrated in ξ_1 it must be spread out in x_1 (uncertainty principle). But there is no restriction in the second variable. We could make ξ_2 very spread out, this would effect a concentration in x_2 . If we try to spread the Fourier transform throughout the whole annulus (to make the L^{∞} norm large) we place restrictions on both x_1 and x_2 concentrations.



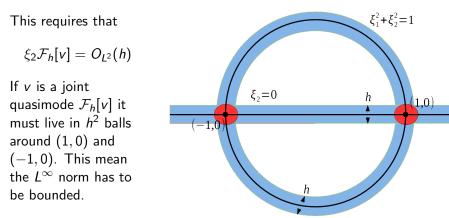
If we try to concentrate in a box around a point this is the best we can do. The square root scale is determined by the local curvature



Degeneracy conditions?

Now we add in a second operator.

$$p_2(x,\xi) = \xi_2 \quad p_2(x,hD) = hD_{x_2}$$

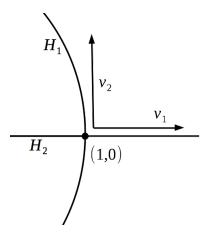


Consider the hypersurfaces

$$H_1 = \{\xi \mid |\xi|^2 - 1 = 0\}$$

$$H_2 = \{\xi \mid \xi_2 = 0\}$$

Their normal vectors at (1, 0), ν_1 and ν_2 are perpendicular. So each one constrains \mathcal{F}_h in one direction. Suggests an assumption that all the $p_i(x, \xi)$ have hypersurfaces as characteristic sets and that the normals are linearly independent.



Sarnak's counter-example

$$\left(\frac{\partial^2}{\partial\theta^2} + \frac{\cos\theta}{\sin\theta}\frac{\partial}{\partial\theta} + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial^2\varphi}\right)v = -h^{-2}v$$

Converting to a semiclassical ΨDO and dropping non-principal terms

$$(h^2 \sin^2 \theta D_{\theta}^2 + h^2 D_{\varphi}^2 - \sin^2 \theta)v = 0$$

So

$$p_1(\theta, \varphi, \xi, \eta) = \xi^2 \sin^2 \theta + \eta^2 - \sin^2 \theta$$
$$p_2(\theta, \varphi, \xi, \eta) = \eta$$

Now at $\theta = 0$

$$H_1 = \{(\xi, \eta) \mid \eta^2 = 0\}$$
 $H_2 = \{(\xi, \eta) \mid \eta = 0\}$

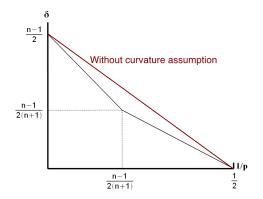
So clearly we need the non-degeneracy to hold for all sets $\{\xi \mid p_i(x_0, \xi) = 0\}.$

Melissa Tacy (University of Auckland)

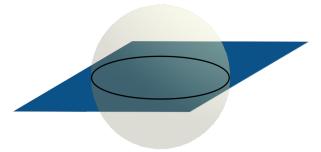
Distinctive piecewise behaviour comes from the curvature of

$$\{\xi \mid |\xi|_{g(x)} = 1\}$$

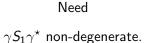
Need to maintain a curvature assumption on the intersection of characteristic sets.



Cross sections



Joint eigenfunction condition leads to taking cross-sections. So need to maintain curvature for these.



- γ be the restriction onto the tangent space of the joint characteristic set
- S_1 the shape operator for $\{\xi \mid p_1(x,\xi) = 0\}$.

Theorem (T 2019)

Suppose v is a strong, joint $O_{L^2}(h)$ quasimode of a set of $p_1(x, hD), \ldots, p_r(x, hD)$ where

- For any x_0 , $\{\xi \mid p_i(x_0, \xi) = 0\}$ is a hypersurface i = 1, ..., r.
- If ν_i(x, ξ) is the normal to {ξ | p_i(x, ξ) = 0} then the set of ν_i(x, ξ) are linearly independent.

• The operator $\gamma S_1 \gamma^*$ is non-degenerate

Then

$$\|v\|_{L^p} \lesssim h^{-\delta(n,p,r)} \|v\|_{L^2}$$

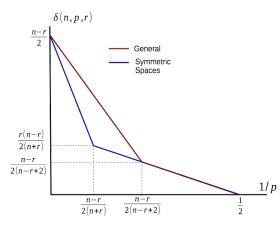
$$\delta(n,p,r) = \begin{cases} \frac{n-r}{2} - \frac{n-r+1}{p} & \frac{2(n-r+2)}{n-r} \le p \le \infty \\ \frac{n-r}{4} - \frac{n-r}{2p} & 2 \le p \le \frac{2(n-r+2)}{n-r}. \end{cases}$$

Note the curvature condition automatically holds if

$$\{\xi \mid p_1(x_0,\xi) = 0\}$$

has positive definite second fundamental form.

Melissa Tacy (University of Auckland)



- Agrees for $p = \infty$ and for $p \le \frac{2(n-r+2)}{n-r}$.
- Symmetric spaces enjoy slightly better estimates between $\frac{2(n-r+2)}{n-r}$ and ∞ .
- Might ask whether better estimates are possible in the general case.

Consider the case

$$p_1(x,\xi) = |\xi|^2 - 1$$
 $p_i(x,\xi) = \xi_i$, for $i = 2, ..., r$

Then we are essentially looking at solutions

$$v(x) = u(x_1, x_{r+1}, \ldots, x_n)$$

where *u* satisfies the n - r + 1 dimensional eigenfunction equation. So we can apply Sogge's bounds in dimension n - r + 1. These agree with $\delta(n, p, r)$.

- Define a process for successively factoring out r 1 of the ξ_i effectively turning the problem into two linked problems
 - One n r + 1 dimensional one which will inherit the curvature condition.
 - r-1 directions in which we "control the spread of the Fourier transform".
- We treat the n r + 1 dimensional problem with the methods of Koch-Tataru Zworski.
- **③** We prove uniform L^{∞} bounds in all the factored r-1 directions.

This technique relies on the semiclassical calculus to tell us about inverses. From the semiclassical calculus

p(x, hD) is invertible as an operator \uparrow $p(x, \xi)$ is invertible as a function (not zero)

Now consider p(x, hD)v = hf. If $|p(x, \xi)| > c$ then we can invert to get that u is small. So solutions (or quasimodes) must "live" near the set where $p(x, \xi) = 0$.

For constant coefficient equations this is the same as saying that their Fourier transform has to live near the set where $p(\xi) = 0$.

Inductive process

Write $p_r(x,\xi) = 0$ as a graph

$$\xi_r = q_r(x,\xi_1,\ldots,\xi_{r-1},\xi_{r+1},\ldots,\xi_n)$$

Now update $p_1(x,\xi), \ldots, p_{r-1}(x,\xi)$ by substituting for ξ_r in each. Then if

$$p_{r-1}^{(r)}(x,\xi) = p_{r-1}(x,\xi_1,\ldots,\xi_{r-1},q_r,\xi_{r+1},\ldots,\xi_n)$$

write $p_{r-1}^{(r)}(x,\xi)$ as a graph

$$\xi_{r-1} = q_{r-1}(x,\xi_1,\ldots,\xi_{r-2},\xi_{r+1},\ldots,\xi_n)$$

and update $p_1^{(r)}(x,\xi), \ldots, p_{r-2}^{(r)}(x,\xi)$ by substituting for ξ_{r-1} in each. Keep going until ξ_2, \ldots, ξ_r are all factored out. After the inductive process we are left with a function

```
p(x,\xi_1,\ldots,\xi_{r+1},\xi_n)
```

which is zero on the set

$$\bigcap_{i=1}^r \{p_i(x,\xi)=0\}$$

- If v is a joint quasimode for the p₁,..., p_r then it is a quasimode for p(x, hD₁, hD<sub>x_{r+1},...hD_{x_n}).
 </sub>
- Note that no derivatives is the $x_2, \ldots x_r$ directions occur in this equation

So if we freeze the x_2, \ldots, x_r we can estimate $||v(\cdot, x_2, \ldots, x_r, \cdot)||_{L^p(\mathbb{R}^{n-r+1})}$ using Koch-Tataru-Zworski.

Unravel the inductive procedure. Suppose that v(x) satisfies

$$(hD_{x_k} - q(x, hD_{x_1}, \ldots, hD_{x_{k-1}}, hD_{x_{k+1}}, \ldots hD_{x_n}))v = hf$$

We can think of this as an evolution equation with $x_k = t$ and write

$$v(x_1,\ldots,t,\ldots,x_n)=U(t)v(x_1,\ldots,0,x_n)+\int_0^t U(t,s)fds$$

Since U(t) preserves L^2 mass along time slices we get an L^{∞} bound on x_k . By performing this argument successively we can control each of x_2, \ldots, x_r . Can we use weaker assumptions on the intersections of the $\{\xi \mid p_i(x,\xi) = 0\}$ to get improvements for some p?

Consider the case $p_1 = |\xi|^2 - 1$ and $p_2 = \xi_1 - 1$. Since the two curves have order 1 contact we don't have the transversity condition. In the 2D setting I have been able to prove estimates classified by the order at intersection point.

The higher dimensional setting is more complex, requires significant classification work first.

